If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+27x-123=0
a = 3; b = 27; c = -123;
Δ = b2-4ac
Δ = 272-4·3·(-123)
Δ = 2205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2205}=\sqrt{441*5}=\sqrt{441}*\sqrt{5}=21\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-21\sqrt{5}}{2*3}=\frac{-27-21\sqrt{5}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+21\sqrt{5}}{2*3}=\frac{-27+21\sqrt{5}}{6} $
| 20+0.04x=25+0.03x | | 67=4(g+3) | | 2-x=20+x | | (9x+6)+(x+14)=180 | | 15x+6=59x+35 | | 3x+6=4(×-2)+11 | | (2x+10)^2=0 | | 2(2x+10)^2=40 | | 4(x+6)-5=5(x-6) | | 13x+2=5x+35 | | 2((2x+10))2=40 | | 6x+30=8(x*4) | | 5x+7=8x-20 | | 4+2((2x+10))2=44 | | x-(x÷4)=24 | | 5/3t+1/3t=-14 | | x(x+10)+20=0 | | 45+0.15x=82.50 | | x-15x=20000 | | x-3+8=16 | | C(x)=0.11x+12 | | 7(2x-1)-1(x-1)=3 | | x+21=2×(5x+21) | | 1=1/2x^2 | | 5/7-x=1/2 | | 5+(x+4)=14 | | x+(5+4)=14 | | [27x-9/x2+8x+7=11/x+7+2/x-4 | | 84+x=108-x | | -8-3x/2=11 | | 11x-1x-25=-6x-10 | | 11x+1x-25=-6x-10 |